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Abstract

This is a guide to coordinate systems, representations, and geometric
relationships between them, for components of the Rochester Robotics
Laboratory. The main entities at issue are the joint angles, location
variables, and coordinate systems of the Puma, the camera angles and
coordinate systems associated with the head, the spatial location of
three-dimensional points, and the kinematic and inverse kinematic
relationships between them. The robot-to-camera kinematic chain is
described, conversions between homogeneous transformations and VAL
location descriptions are provided, and inverse problems (camera
angles to aim cameras at a 3-D point given a robot configuration,
binocular stereo calculations) are solved. Constants describing the -

robot head and sample robot description data structures are provided. i )
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1. Purpose
The purpose of this document is to relate elementary kinematic concepts and

calculations to the University of Rochester Robotics Laboratory, with the aim of making
certain aspects of the Puma arm and the two-camera head easier to use and understand.
In using the robot to interact with the world, one quickly finds a potentially bewildering
set of coordinate systems, angles, parameters, and state descriptions that must be related
one to another in order to produce coherent robot actions and to answer common robotic
questions. This document mainly concerns the definition and manipulation of coordinate
systems. The semantics of the coordinates are such things as tool positions, camera
orientations, and so forth.

Section two presents a short section on transformation notatation and properties,
which should be read. There follows a glossary of scalars, vectors, and transformations
we use later in the document, which can be skimmed and referred to as needed.

Section 3 defines some important robotic coordinate systems. LAB is the base
coordinate system attached to the laboratory. TOOL describes the location of the robot
head. FLANGE is another description for head location, but one more convenient for use
with imaging operations.

Section 4 describes the model of the imaging process. Section 5 describes and
defines the transformations along the chain of links that the Puma and the head embody.

There follow several sections, each one describing how to convert from one
representation to another, or deriving a desired transformation or description from a --

specification. For example, it may be of interest to convert the TOOL coordinate syster -
into the description used by VAL for robot location. An example of deriving an
interesting configuration is to find the camera altitude and azimuth angles that the
camera at a point in (X,Y,Z) space.

There is room for expansion of this report, and an expanded version should be - R
produced later when more is known. One obvious lack at present is the Jacobian
calculations for the head -- at what rate to move the cameras to compensate continuously
for continuous head motion and vice-versa.

2. Transform Basics
We follow [Paul 1981] and represent 3-space points as column homogeneous 4-

vectors or column Cartesian 3-vectors. Transforms (and coordinate systems, or CS's),
are homogeneous 4x4 matrices. All transforms but the camera transform are rigid. Thus
they denote a rigid rotation or translation or both. If both, then think of the rotation as
being done before the translation. A transform B operates on points expressed as column
vectors to yield new points. A transform B represents a CS in that it can be thought of as
four columns, three of which represent points at infinity and correspond to directions of
the XY, and Z axes of a CS, and the last of which represents a 3-space point and
corresponds to the origin of the CS. Transforming (that is, multiplying) a CS by a
transform just rigidly moves the CS in space. LAB is the identity transform, and
transforming LAB by B yields B. Thus B cleverly represents a coordinate system and a
transform that moves LAB to that coordinate system.

If'lis a vector denoting a point in LAB cordinates, and A and B are transforms,
then B-* gives the coordinates of ("is") the point, in LAB coordinates, that results from
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rotating and translating Tby B. ABis the point resulting from applying B to x, then A
to the result, where rotating and translating by A is done with respect to the original LAB
coordinate system. Alternatively, AV" means applying to "the transformation A,
followed by the transform B expressed in the frame A. is conceptualized as taking place
in the coordinate system induced by all previous movements, the final transform is
A 1A2 ."" A. if 1 is the link connected to LAB. IfIis a point in LAB and B is a frame,
then-texpressed in B is B-1. Last, if B takes LAB to the CS B (its alibi aspect), then B
also is the transform from B coordinates to LAB coordinates (its alias aspect).

2.1. Scalars
VAL expresses distance in mm, angles in degrees. Parameters to our subroutines

are expressed in radians, to save conversions. Since users often prefer degrees, our user
interfaces (and this document) usually express angles in degrees.

f Effective imaging system focal length (including digitizing effects).
(Note that this number has nothing to do with the physical focal length of
the lens).

s Camera aspect ratio: column spacing / row spacing.

0 Camera platform altitude angle in radians.

0 Generic azimuth angle.
OL (Head's) Left Camera azimuth angle.

OR Right Camera azimuth angle.

2.2. Vectors
Pixel coordinates in MaxVideo routines are expressed as (pixel offset in scanline,

scanline), which corresponds to the "physical" (x,y) coordinate scheme used in the
imaging model coordinate system, which has Y axis down and X axis to the right. In
array indexing, however, the "natural" element-addressing scheme is
Image[row][column], which has semantics (y,x). Where this document uses pixel
coordinates, they are expressed in the physical system rather than in the array-indexing
system.

generic vector (x,y,z)T, a point in space expressed in some coordinate
system. Often the homogeneous column 4-vector (x,y,z, w)T

(i,5) image (pixel) coordinates of a point.

(O,A,T) "Orientation, Altitude, and Twist" angles describing the orientation of
TOOL axes in terms of LAB. Like Euler angles but not (see below).

Loc (X,Y,Z,O,A,T). A generic location (X,Y,Z position and orientation) used
by VAL. May be relative. In this document we usually construe Loc to
define the location of the TOOL CS in terms of LAB.

Head (0 , OL, OR), Camera rotations defining the head configuration.

JntAngs six angles defining the rotations of the robot links. Used by VAL software
as "precision points".
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2.3. Matrices, Coordinate Systems, and Transforms

Sij The ih row, jih column element of S.
Ai An "A Matrix", expressing the rigid transform induced by one link in a

kinematic chain.
Tj A transform induced by a kinematic chain. By definition,

Tj=A 1A 2 ... Aj.

Rot x(a) Rotation around X axis by angle a.

Roty(a) Similar

Rot-z(a) Similar

Trans(x,y,z) Translate by x,y,z.

LAB CS attached to the laboratory, defined below.

TOOL A user-definable coordinate system rigidly attached to joint 6 of the Puma.

NULLTOOL VAL's default value for TOOL. It corresponds to a relative location of
(X,Y,Z,O,A,T) = (0,0,0,90,-90,0).

FLANGE CS convenient for head and camera calculations. Like another TOOL CS,
it is rigidly attached to joint 6. Defined in terms of NULLTOOL or T 6 --

relative to T 6 it has a Location of (0,0,0,-180,0,-90) (see below).
C A perspective camera transform, not a rigid CS transform.

CamPos FLANGE transformed so its Z axis points along a camera's optic axis and
its origin is at the front principal point of the lens. CamPosL and
CamPosR are for left and right cameras.

PhysPixel Translates pixel coordinates so origin is upper left comer of pixel array,
not its middle.

3. Coordinate Systems and Robot Coordinates

3.1. LAB

The Puma's internal representations assume that its first link is rigidly attached to a
LAB coordinate system. VAL generally reports locations in LAB coordinates. The
Puma's BASE coordinate system is usually synomynous with LAB. BASE may be
changed by invoking the VAL BASE command, which allows translation of the X,Y,Z,
origin and Z-rotation of BASE. An automatic Z rotation may be a good idea, since the
Puma is bolted slightly askew.

At initialization, according to the manual, the origin of LAB is at the intersection of
Joints 1 and 2. Certainly the origin is somewhere near the centerline of the Puma.
Imagine you are looking in at the Puma through the window. Then in the default state,
the LAB X axis points to your right parallel to the window, the Y axis is pointing awi
from you toward the far wall, and Z is up (Fi% 1). If all joint angles are 0 (JntAng = 0),
TOOL = NULLTOOL, and Head = (0,0,0) = 0, the cameras are pointing away from you
down TOOL (and LAB) Y.



3.2. T 6 and TOOL

T6 is a CS attached to the end of the last link of the robot. The TOOL CS is
defined relative to T6 . T6 , TOOL, and FLANGE share a commonorigin. T6 is only
useful to understand the TOOL coordinate system. When JntAng =0 (Fig. 1), T6 has its
X axis pointing down (along LAB -Z), its Y axis pointing along LAB X, and its Z axis
along LAB -Y (Fig. 1).

The TOOL coordinate system is a transformation of T6 , and is a primitive notion in
VAL commands, which can often be expressed in TOOL coordinates. Upon
initialization, TOOJI = NULLTOOL, which (Fig. 1) makes T7 simply a translation of
LAB if JntAng = 0. VAL reports the location of the TOOL CS in the form Loc =
(X,YZ,O,A,T). NULLTOOL corresponds to a relative location, with respect to T6 , of

ZT

T6 YT

Z6 '• " " .
is ,. NULLTOO XT

ZF

FLANGE XF

YF
Y

ZT
YT, ZF

Z LAB

SX XT, XF

YF

Figure 1: The Puma and head, as seen from the observation window, showing three basic
CSs. The'rigins of T.,.NULLTOOL and FLANGE coincide. The robot is shown with
JntAng =0 and Head =0. In this configuration Loc = (650,190,975,90,-90,0).
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(0,0,0,90, -90, 0). The O,AT components of Loc are angles that have the following
semantics. "Rotate by -O around (the current) X, then by A around the new Y, then by T
around the new Z". Thus they have the same flavor as Eulg angles. It is easy to verify
that applying the NULLTOOL transform to T6 at JntAng = 0 transforms T 6 to have axes
parallel to LAB.

One interesting and useful aspect of TOOL is that it can be redefined by the user.
For instance, one can redefine tool as a remote point, such as a world point that is
currently in view. Then it is possible to issue VAL commands that rotate the robot head
around the TOOL origin. The effect is for the head to move in space and to be
continuously reoriented by the robot wrist (not the camera motors) so that the cameras
remain pointed at the same three-dimensional scene point.

3.3. FLANGE

The head is rigidly attached to the sixth robot link, and hence to T6 and TOOL.
When the eyes are facing "forward" (Head = 0), FLANGE is a coordinate system whose
axes are oriented to be consistent with the camera imaging model (Fig. 1). In FLANGE,
Z is out long the direction the head is facing (parallel to the optic axis of cameras if
Head = 0). Y is down, increasing with the row number addresses of pixels in an image,
and X is "to the right", increasing with the column numbers of pixel addresses in the
image. One common trick is to define TOOL as FLANGE. This renders the explicit
FLANGE transform unnecessary. If the TOOL transform is set to (X,Y,Z,O,A,T) =
(0,0,0,-180, 0, -90), then T6 is transformed to FLANGE by the TOOL transform within
the Puma.

4. Camera Imaging Model

Here we are concerned with the "intrinsic" camera parameters [Tsai 1986], which
govern its optical properties. "Extrinsic" properties define its location in space, and
determine the CamPos coordinate system. These properties are determined by the
kinematic issues discussed below. For intrinsic camera properties we use a pinhole
model (e.g. [Duda and Hart 19731), which is to say we do not correct for radial lens
distortions. This is not a policy, it is just that we have not yet been motivated to do so.

The camera optic axis is out along the positive Z axis. Looking out along the
camera's line of sight, Y points down, increasing as does the scan-line number in the
camera's image. X point to the right, increasing as the pixel number along a scan line.
X,YZ form a right-handed coordinate system. We assume the origin of coordinates is at
the camera's front principal point, and that the image is formed at a distance f in front of
the origin in the X-Y plane by point projection. Then a scene point Tyields the image
point coordinates

z z
where f is the effective focal length of the entire imaging, transmission, digitization, and
ROIStoring process, and s is a scaling constant that expresses the "aspect ratio" of the
system. The angular (spatial) resolution of the final pixels resting in ROI is less in the Y
direction, and s tells by how much, Thus the model tells where a point appears (under
default setings) in ROI store, and under default settings where its location is reported by
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FeatureMax. It includes all effects induced by CCD chip layout, conversion to analog
waveform by the Panasonic electronics, sampling by DigiMax, and storage in ROI. It
does not pretend to say anything about any of these effects in isolation.

The parameters f and s were estimated using a calibration chart, and the values in
the "Constants" section represent our best current estimates.

The camera transform can be expressed as multiplying the homogeneous scene
point vector by a transform matrix C and then performing normalization [Tsai 861. The
normalization operation scales a homogeneous 4-vector (x,y,z,w)T by (1/w). In this
context, the resulting value of z is an artifact, since the image has only two dimensions.
The matrix C is

f 0 0 0
c= 0  fs 0 0

0 0 f 0
0 0 1 0

The camera extrinsic properties are determined by the LAB-Camera kinematic
chain discussed next.

5. The LAB-Camera Kinematic Chain
There are some fourteen identifiable transforms between LAB and a CamPos

Coordinate System (Table 1). The head transforms can be collapsed into two link
transforms involving offsets and one rotation each [Paul 81 ], but in this treatment all the
transforms beyond A8 are pure rotations or translations. The Joint 1-6 transforms A1-A 6
generally involve both offsets and rotations.

Define Ti as A1 A2 ... Ai. These transforms, their partial products, and the inverses of
their partial products, are of use in everyday robotic life. For instance, TS converts points
expressed in FLANGE coordinates (often the output of vision routines is in FLANGE)
into LAB. As another example, to simulate making an image with a camera, a point in
LAB must be transformed by T-1 in order for the camera imaging model to apply.

Note that T7 is implemented internally in VAL. We can only ask or set the value of
T7 , (not A, -- A7 ). A8 -- A14 are transforms that are created and manipulated by the
user. Thus we can describe A7 and A8 as follows.
A7  NULLTOOL or set by user.
A8  Rot_x(-90) if TOOL = NULLTOOL, Identity if TOOL = FLANGE.

There are two CamAxis transforms, corresponding to the offsets of left and right
cameras along the camera platform. CamAxisL and R are given special names only
because they are the last head points that are rigidly affixed to FLANGE. Thus they may
offer some efficiency for position evaluations when the eyes are moving but the head
(robot) is not. From this point on there are two kinematic chains, corresponding to the
differing offsets and azimuth angles of the two cameras, and denoted by L and R. We
often group A8 ... A14 into a single transform matrix (named CamPosL or CamPosR)
expressing the camera location in FLANGE coordinates.
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A matrix Name Const. or Var. Resulting CS
Ident LAB C LAB
A1  Joint 1 V
A2  Joint 2 V
A3  Joint 3 V
A4  Joint 4 V
A5  Joint 5 V
A6  Joint 6 V T6
A7  Tool V TOOL
A8 FLANGE C FLANGE
A9  Neck Offset C
A10  Eye X Offset CL, CR CamAxis (L,R)
A11  Altitude V
A12  Alt. Offset C
A13  Azimuth VL, VR
A14 Az. Offset C CamPos (L,R)

Table 1: The LAB to camera kinematic chain of transforms.

The definition of distances and angles for the robot head are shown in Fig. 2. See
the section on Constants for numeric values.

6. Forward Kinematics: CamPos from (,0)
The camera motor control software positions a camera at a specific altitude, or pitch

( ) and azimuth, or yaw ( 0 ). We should like to compute CamPos from altitude and
azimuth. CamPos is expressed in FLANGE coordinates.

CamPos=A9 A10 "" A14 .

The values of the relevant A matrices are as follows (Fig. 2). Constant values are given
in Section 13.
A9  Trans(O,NECKOFFSET,O).

A 10  Trans(LEFT_OFFSET,0,0) or Trans(RIGHTOFFSET,0,0).

A11  Rot_x(o).
A 12  Trans(OALTOFFSET,0).

A 13 Roty(OL) or Rot..y(OR).
A 14  Trans(O,O,AZOFFSET).

7. Forward Kinematics: TOOL from Loc
VAL provides several useful conversions. A "precision point" is a JntAng vector,

and VAL understands robot locations in both precision points and locations (Loc

., i / - . . . - A
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TOOL Z

eL FLANGE -Y R

+_ AZ 4
OFFSET

IIII~li Illll~l[ I mil~ ll lilml I ALT

LP -RIGHT

NECK OFFSET OFFSET
OFFSET

'FLANGEO.O.Oi

FLANGE X

Figure 2: Axes and link offsets in the robot head (see Section 13).

vectors). It of course is possible to derive (O,A,T) simply by composing all the joint
angle rotations. Deriving X,YZ from the joint angles involves knowing offsets and
doing a full forward kinematics solution. Generally then the TOOL location is most
easily obtained from VAL. VAL reports the TOOL location as a JntAng vector (a VAL
"precision point") and a Loc vector (a VAL "location"). Our current Purdue robot
control software only returns a Loc, although that is subject to change.

Converting the (O,AT) angles to a transform involves knowing exactly what they
mean. The Puma manual is not explicit here. Ray Rimey determined the following
transformation, which, in its alias aspect, moves LAB to the current TOOL CS....

TOOL(Loc) = Rot-z(-90)Rot_y(90)RoLx(-O)Rot.y(A)RoLz)Trans(X,Y,Z).

This transformation, in its alibi aspect, thus converts points from TOOL to LAB
coordinates. It is written out explicitly below. If the TOOL transform is redefined by the
user, then it is to that redefined CS that LAB will be transformed. Redefining TOOL
with a VAL command means setting the values of X,Y,Z,O,A,T in the above
transformation. Thus if TOOL is redefined within VAL from NULLTOOL to FLANGE,
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then A8 should be the identity transform, and can vanish from the kinematic chain and
from the user's external calculations.

8. Inverse Kinematics: ($,9) from CamPos

Given a camera position expressed as a CamPos transform in FLANGE coordinates,
what 0 and 0 angles created it? To find out, write the transform

E--A9A10 -. A 14 ,

and notice that certain individual elements of E contain exactly the sines and cosines of O
and 0. We see

0=atan_ 2(E 21 ,Ejj),

0=atan_ 2(Eo2 ,Eoo ).

This is a very simple version of the work needed to get O,A,T from TOOL.

9. Inverse Kinematics: O,A,T from TOOL

The FRAME command in VAL takes four input vectors that describe the TOOL
axis unit vectors and origin, and returns the corresponding Loc vector (X,Y,Z,O,A,T).
The interesting part of this is of course deriving (O,A,T) from the TOOL CS. In turn,
this is an operation quite closely related to deriving Euler angles from a transform, which
is an early exercise in [Paul 81].

The approach is to multiply the five matrices from the TC .L(Loc) formula (leaving
out the translation) together to get a TOOL transform D. Say

D=B1 B2 B3 B4 B5.

Then, postmultiply both sides by B 1, and look for interesting relationships elementwise
between the two matrices. In this case, as in Paul's solution for Euler angles, we find that
we have enough information to compute O,A,T in the form of atan2() functions, which
have good properties. Proceeding to details, use the notation SA for sin (A), etc,
substitute Ai for B, in the kinematic chain equation above, and write the resulting
product of the first four B matrices as

-SOSA Co SOCA

B 1 -[ COSA so -COCA 0
-CA 0 -SA 0

0 0 0

The complete transformation is

[COST-SOSACT COCT+SOSAST SOCA 0]
SSOST+COSA CT SOCT-COSAST -COCA 0

-CA CT CAST -SA 0
0 0 0

Section 7 establishes that B1 _ = DB5 1 = D Rot.z(-T). Performing the formal
multiplication on the right hand side yields a 4x4 matrix whose elements are functions of
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the elements of D (which we know), CT, and ST. Equating these elements to those of
B 1--4, we find our first interesting equation:

STD 20+CTD 21 =0,

which implies

T=atan_ 2(D 21 ,D 20).

We can also read off that

-SA =D 22

and

-CA=CTD 20-STD 21,

so

A =atan_ 2(-D 22,STD 21 -CTD 20).

Finally, we can read off expressions for Co and So to get

O=atan 2(STD lo+CTD 1I ,STD oo+CTD 01).

At the time of writing, these derivations have not been checked against the output of
the FRAME command.

10. Inverse Kinematics: ( , 0) from (x,y,z)

Given a point'lat (x,y,z, 1 )T in FLANGE, which 0 and 0 parameters will center the
point in a camera's view? Following the strategy of the last section did not immediately
lead to a promising set of equations. The hope was that the camera physical transform E
could be written out and the fact that E--(O,0, z, 1)T would lead to something simple. It
did not seem to. Instead we use a straightforward geometric approach (Fig. 3).

From Fig. 3, we have
h"(z2 +Y2)1/2, .

b=asin (dlh),

4-=atan_ 2(-y, z) - b.

The asin0 is bad practice because of its ambiguity and lack of differentiation for angles
near 90, but for small angles, as will usually be the case in such a setup as this, it behaves
reasonably.

It remains to determine the azimuthal rotation. Rotate space by Rotx(-O), bringing
the cameras and point into a plane of constant y. The point's new (x,z) coordinates
become (x, zcos(O)-ysin(O)), and finally we have

O=atan_ 2(x, zcos (0)-ysin (0)).

. ...... .... .. ,



12

(Z' Y.Z)

z
(a)

2 y

(x, zcos (4p))-y sin (4))

(b)

Figure 3: (a) Distances and Angles for computing the~ to aim camera at a point

Z(b) Distances to compute 0 to aim camera a-

11. Inverse Optics: (x,yvz) from Two Images via Pseudoinverse
The complete imaging model is

where P is the PhysPixel transform that shifts the origin of pixel coordinates to the upper
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left comer from the center of the image, norm 0 is the homogeneous vector normalizing
operation, C is the imaging matrix given above in the Camera Model section, and T is the
inverse of the transform that locates the camera in LAB coordinates, i.e. it is
(FLANGE CamPos)- 1. First, let

(j, , j, 1)T=p - I 1),

(In our system this just amounts to defining the new variables i=!-255,=5-255 ). Then
from the definition of norm 0, and letting't=(x,y,z, 1)T we have

(i,5') = ( -

where [CT]0 is the first row of CT, etc. Moving the denominators over to the left gives
us

StCT]3=[CT] 1,
and multiplying everything out and rearranging gives two linear equations in x,y, and z in
terms of the known quantities f the effective focal length, s the aspect ratio, and Tij.

x (iT 2 -.froo)+y(IT 21-fro, )+z(iT2-T 2 ) =fo3--iT 23

x (T 20-fsT1O)+y5T 21 -fsT 1 )+z(yT 22-fsTI2 ) = fsT13 -yT23.

Thus knowing the physical locations of two cameras, and knowing the pixel coordinates
of the corresponding two images of the same three-dimensional point I yields four
equations in the three unknowns (x,y,z). They can be solved by a pseudo-inverse
method. If X is the matrix of coefficients of (x,y,z) in the above equation and Y is the
row matrix of the right hand sides, then the four equations can be written

Y=XB

if B is the formal column-vector of the variables (x,y,z)T. The values of x,y, and z are
obtained simply by computing the pseudo inverse of X:

B=(XTX)-l XTy.

The physical interpretation of this method is made difficult by the fact that the
"observables" (the 1 and 5) and the "independent variables" (the Tij) contribute to
coefficients of both the B matrix and Y vector. Analysis shows that the effect of noise on
this method may be significant, since a one-pixel error in i position causes a 20mm depth
error at a two meter distance, and a one degree error in azimuth produces a 20mm error
in x location. The method has been implemented and integrated into a system that
obtains three-dimensional position and verifies it by touching the object with a pointer,
and seems to perform as well as the more geometrically intuitive method given in the
next section. One potential advantage of the pseudoinverse method is its straightforward
extension to more data points.

-. . . .. .-. - . ..- I?
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12. Inverse Optics: (x,yz) from Two Images via Vectors
Duda and Hart [1973] present a geometrically intuitive method for stereo from two

image points. We have implemented it and find it works as well as the pseudoinverse
method for two images. The stereo problem is posed using plain 3-vectors, not
homogeneous vectors. The following vectors are defined (Fig. 4).

The two cameras have lens centers at LL and La. The vector ' points from L to
LR. The 3-D point in the scene isr T is imaged in cameraL as L=(ixL YL)t, and in
cameraR it is imaged into R. The vector L points from the lens center of cameraL
through the point L and to the 3-D point in the scene. A unit vector in the same
direction is'L. Similarly, cameraR has"R and"R defined.

A temporary world coordinate system is placed at LL, thus LL (Once the 3-D point
is estimated in this coordinate system, we will generally convert it to another system such
as FLANGE.)

The vectors'L andR are defined as follows

-4-

rL rR

.. -

/XL 

X]R

UL UR

LL 8LR

Figure 4. Vectors Used in Two-Vector Stereo Formulation.
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The approach is to estimate the two scalars aL and aR such that the'n/, and'PR vectors are
as close together as possible. Note that6is known and that iR and'iR can be computed
from -l and "R.- Then the value of I can be computed from aL and aR as the point
midway between the heads of the'7- and"OR vectors

-t= [ a L"L + ("9+ a R)] 2 .

The values of aL and aR are estimated by minimizing

SIaLV-(-79RR)I 12

Duda and Hart give the answer to the minimization as

aL.= I-.(itR)2

A few ancilliary equations are

(;,L IL/S f)T

I ( L YLIS f)r I

(V R R/S f)T

I IR Rlsf)T I I

where s is the pixel aspect ratio. Given the positions of the Left and Right cameras
FLANGE coordinates (call these CamPos transformations CamPosL and CamPosR), &
may be computed as

-=ZR=CamPosL-1 CamPosR (0 0 0 1)T.

If the cameras do not have parallel optic axes, then the transformation
(CamPosL-1 CamPosR) must be applied toVR to rotate it with respect to uL.

13. Lab Constants
These values are taken from the directory /u/brown/robot/include, where there are

several files of the form Xconsts.h.

13.1. Head Constants

NECKOFFSET (-149.2) /*pitch axis to tool axis*/
LEFTOFFSET (-12.7) *tool Z axis to Left camera yaw axis*/
RIGHT_OFFSET (152.4) *tool Z axis to Right camera yaw axis*/
ALTOFFSET (-65.1) /*cam axis to pitch(altitude) axis */
AZOFFSET (34.9) *nodal point to yaw(azimuth) axis */
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13.2. Camera Constants

CAMF 980.5 /*imaging system effective focal length*/
CAMS 1.289 /*imaging system pixel aspect ratio y/x*/

* the following constants allow computation of how many pixels to move for a
corresponding change in angle, and vice-versa. They are accurate near image center, off
by a few pixels in the periphery due to failure of small-angle assumption. The focus
distance at which they are computed is the "standard focus distance " of 134cm, by RP
and CB on 5 July. The CAMF above also applies at this distance. */

CAM_X_P_D 17.75 1*pixels per degree in x *1
CAM_Y_PD 22.79 /*pixels per degree in y */

13.3. Robot Constants

INITX 650.0 I*init xyzoat when all joint angles 0 */
INITY 190.13
INIT_Z 975.0
INIT_0 90.0
INITA (-90.0)
INITT 0.0

14. Rigid Transformation Library

Edmond Lee wrote a library for manipulating rigid transforms as an extension to
libmatrix, based on an ealier column-vector version by Dave Coombs. It provides basic
and efficient implementations of standard data structures and operations. Following are
exerpts from its header file.

typedef struct matrix *ptt; * homog point (4x I col. vector) */
typedef struct matrix *tr-t; /* homog transformation (4x4 matrix) */

ptt pt zero(; /* Return new point 0 0 0 1" 1
pt t pt rotx(/*ptt p, double r*/); /*sideeffects p, rot about X by r
pt_t pt roty(/*pt t p, double r*/);
ptj ptrotz(/*ptt p, double r*/);
ptj ptwanslate(/*pt-t p, double x,y,z*/);
ptt pt-normf/*pt-t p*/); P* sideeffects p by normalizing it */
pt-t pttransform(/*pt_t p, tr_t T, ptj q*/); /*q = Tp. returns q*/

tr_t tr._identO; / returns Identity transform /
trt tr_rotx(/*trt A, double r*/); I*sideeffects A, rot about X by r*/
tr_t tr roty(/*tr t A, double r*/);
trt trjotz(/*tr_t A, double r*/);
tr_t tr_translate(/*tr_t A, double x,y,z*/);
tr_t Ir inven(/*tr .t A, B*/); /* B is A inverted, B returned */

I.-

I
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tr_t trtransform/*tr t A, trt B, tr-t C * P; 1* C - A*B, C returned */

15. Sample Robot Data Structures and Functions

Data structure requirements for applications vary, but the following sort of
structures have been successfully used for various vision tasks, and may serve as a
template for future (or possibly even standard) robot and head data structures, access
functions, and update functions.

/* ----. . .-*-----------------------------------------------------------*
/* intrinsic camera properties*/

typedef struct timeval *timestampt;

typedef struct Camera
{

int verbose
timestampt CaTime; /*time last modified*/
double CaFocusDist;
double CaFstop;
pUt Phys-toPixel; /*x and y shifts for phys to pix coords. */

trt CaLens; /*C matrix containing f and sf */
S*CameraLt;

/* ------- .- .--------------------------------------------------------- - */

/* Head geometry */

typedef struct Head_Config /*uses cnsts in headconsts.h, camconsts.h */
I

int verbose;
timestamp-t HdjTime;
double HdAlt; /*head altitude angle (pitch) */

pt-t HdNose; /P offset of end of nose (FLANGE coords) */

* .........---------- Left Camera ----------------------------------- *

double HdAzL; Ikleft camera azimuth*/

pt_t HdCamL_Axis;
1* This vector holds the neck and the camera yaw axis offset, specifying offset from
FLANGE origin to last rigid point in head kinematic chain. Useful intermediate
transform if only eyemovements are happening. */

tr_t HdCamL_Pos; /* CamPos: camera's position in FLANGE.*/
tr_t Hd.CamL_inv; / Inverse of CamL_Pos *1

I !
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Camera-t HdLCamLd* Left Camera state*/

P ------ Right Camera is Similar----------------------------*

double HL.AzR;
Pt-t HdCamRAxis;
tr-t HdCamRPos;

_r- Hd-CamRlInv;
Camera-t Hd&CamR;

*Head_Configjt;

/*-----------------------------------------------------
/* Puma Geometry */

#define PUPDUE 0
#define TYPE 1
#define SIM -1

typedef struct Rob_Config

mnt verbose;
int Rob-mansim;r /* purdue, console, or simulated*/
int Rob -ddAlvin; /*purdue puma device descriptor*/
timestamp t RobjlTime;

double RobSpeed[2]; /*[0] is speed, [1] is mode *
double Rob -Jnt[61; /*Joinlt angles of Joints 1-6 in order*/
double RobLocation[6];

/*Curent TOOL location as X,Y,Z,O,A,T. Updated as Robot moves. ~

double Rob-Tlool[61;
/*Curent TOOL transform as X,YZ,O,A,T. Set by user, same as A 7 , defines TOOL in
relation to T6, does not move with robot. */ .

tr -t Rob_-FLANGE; /*transform to move LAB to FLANGE *
_r- Rob-FLInv; /*mfvrs of above *

Head_Configjt RobHead; /*Head configuration struct*/

*Rob_Configjt;

/*------------- Functions -------------------- *1
/*rob-kiiiec
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extern tr _t Loc_To_FLANGE (1* J..oc (xyzoat) array *)
/* Returns a CS for the Rob_FLANGE entry in the Config *

extern RobConfigjt RobSetup(I*simulation type*/);
/*Creates Rob config, also calls head config setup ~

extern void Rob_Set_Tool(I*Loc*/);

/* Set the TOOL CS to be that represented by Loc ~

extern void Rob _Free( I"Rob..Conig..t *A) /*destroys structure*'/

extern void RobMoveq/* Rob-Configjt, RobLoc */);
/*Depending on mode, moves robot or not. Updates structures.*/

extern void RobDumpO; /*p-flnt robot state *

/*head-kine .c

extern HeadConfigj Head_Setupo;
P* Creates the head-config, puts in pre-computable trjt's ~

extern void Head_Move(I* HeacLConflgjt, LeftAz, RightAz, Alt*/);
/*computes L and R Pos and Cam matrices in FLANGE coords, moves or not depending
on robot mode. *

extern void HeadFree(/*Hea&-Config-t *A)
extern void HeadDumfp(I*Head-Configjt *A)
extern void CamDump(/*Caneraj /)
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